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I. Introduction

However difficult the fundamental problems of theoretical computer science
may seem, there is very little to suggest that they are anything more than
knotty combinatorial problems. So, when we look for reasons for our inability
to resolve P = NP and related questions, we most likely find them dealing with
a lack of understanding of particular computational problems and their lower
bounds. This is the sense of Hopcroft's prediction: "...within the next five
years, nobody will prove that any of these problems takes more than let's say
n2 time. I think that's a reasonably safe conjecture and it also illustrates
how little we know about lower bounds." [MT]. Hopcroft's guess is uncanny
in its accuracy -- after six years and considerable effort by many researchers,

his conjecture remains unchallanged.

e s e e e e B B e

The results in this paper offer a possible explanation for our failure

7 to resolve these problems. Roughly, the main result of the sequel links

[

lower bounds and a branch of mathematical logic known as model theory. In par-

! ticular, we prove that the existence of nonpolynomial lower bounds is equiv-

alent to the existence of nonstandard models of a sizable fragment of

arithmetic. Since these are deep logical issues and there are very few tech-

s

niques for handling them, and since the nonstandard models in question are non-

P
. -

effective, it seems plausible that this linking of complexity theory and logic

explains our failure to obtain nontrivial lower bounds.

One of the aims of mathematical logic is to clarify the relation between
e mathematical theories and their interpretations -- or models. In logic, a

theory is simply a collection of statements and all of their logical consequences,

that is, a collection of (nonlogical) axioms closed under the relation "|-".
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Models are the structures in which theories are interpreted.

Plane geometry is such a mathematical theory. In antiquity, the relation
between Euclidean geometry and its models was considered obvious, and this
relationship was even further clarified by the arithmetization of geometry.

It was therefore a shock to the mathematical world when, in 1868, Beltrami
announced that geometry can have more than one model -- a very strange one

at that since in his model the paraliel postulate is false. Since the parallel
postulate is certainly true in the standard model of geometry, its negation is
not provable -- the parallel postulate is consistent with Euclidean geometry.
On the other hand, since the negation of the parallel postulate is also true
in a (nonstandard) model, its negation (i.e., the paral]e[ postulate itself)
is not provable. More recently, Cohen [Co] proved that both the axiom of
choice and generalized continuum hypothesis cannot be proved from the remain-
ing axioms of set theory -- Cohen introduced a radically new concept called
forcing to construct nonstandard models with prescribed properties. The first
such result for formal arithmetic was obtained by Paris and Harrington [PH].
They proved that a modest generalization of the finite Ramsey theorem of
combinatorics is not decided by Peano arithmetic. Sheperdson [Sh] discusses
the unprovability of induction schemes and such statements as Fermat's Last

Theorem, for the case n = 3, from weak fragments of arithmetic.

This property of statements of a theory is called independence: a
statement is independent from a theory T if the statement cannot be proved
or disproved within T. Of course, nge] proved that every sufficiently
powerful theory must leave infinitely many statements unresolved in this way.
In current terminology, however, a qualitative distinction is usually drawn

between formal undecidability and interesting independence theorems. In the




ngel-style formal undecidability theorems, one explicitly formulates a
diagonalizing statement and using the properties of the axiom system in
question, encodes that statement as a formal statement of the theory. In
independence results whatever diagonalization is present in the proof, is
well-hidden. One begins with a fixed (true) formal statement -- whose
formalization has not been obtained with a knowledge of the axioms to be used --
and using model theoretic techniques, shows an interpretation in which the
statement fails to hold (cf. [DL] for a survey of these results). Therefore,
independence results seem to exhibit the following characteristics.

(1) There is no direct diagonalization. That is, the statements
whose independence is to be proved do not refer explicitly to,
say, halting computations.

(2) The independent statements are interesting in their own right.

In set theory, for instance, independent statements often rep-
resent useful infinitary combinatorial principles.

(3) The independence of a statement is sensitive to the underlying
theory. In formal undecidability results one can add additional
axioms to the theory, encode the independent statement for the
new theory and retain its undecidability. In interesting inde-
pendent theorems, however, the independence of the statement from

a set of axioms characterizes the power of the axioms; changing

the underlying theory by adding more axioms decides the statement

in the expanded theory.

Except for the discussion of Hopcroft and Hartmanis [HH] and the results
of Lipton [Li], we are aware of no other results that relate the basic issues

of complexity theory to independence or nonstandard models. The impact of




our results is that proving lower bounds on certain computational problems
is as hard as showing that a certain true sentence is independent from a
powerful theory. In particular, we show that for certain S, S ¢ P (i.e., S

is intractible) exactly when a particular true sentence As related to S must

be false in a nonstandard model of arithmetic. Furthermore, this model must

be noneffective. The various proofs of this result yield existential proof
techniques for showing that problems are solvable in polynomial time. An

interesting aspect of this result is that it apparently does not generalize

pud Gee wes Gee O BN =

much beyond polynomial time computation. That is, it does not relativize in

[ ]

*

any obvious way, nor is it possible to formally substitute many other time

- classes for P in the statement of the theorem.

| S
»

II. Definitions

[ m——

The definitions from complexity theory are standard [BL]. P denotes the

set of problems solvable in deterministic polynomial time. NP denotes the
i problems solvable in nondeterministic polynomial time, and coNP denotes the
set of problems whose complements lie within NP. The inclusions

P < NP n coNP < NP
- are obvious. Although it is widely believed that both inclusions are strict,
i' the results to be quoted below are interesting even if, say, P = NP n coNP.

We will return to this point later.

Our logical notation is standard (see [Ba]). Our language is any

i. acceptable first order language with arithmetical symbols and quality. We

}— use V for universal quantification and 3 for existential quantification.

Among other symbols, x,y,z are used for variables, and the infix symbols

o
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+ and ~ and - are used for addition and multiplication and subtraction, suc
and pred for the successor and predecessor functions, and 0 for the constant

zero.

Let T be a set of formulas, then T } ¢ indicates that ¢ is a logical
consequence of T. A theory is simply the set of formulas which are logical
consequences of T. Since the set of theorems of the theory is uniquely char-
acterized by T, we identify the two. A theory is consistent if 0=1 is not
among its theorems. A formula ¢ is independent of the theory if neither ¢
nor ¢ is a theorem. If T is a theory, T+ denotes the result of adjoining
¢ as an axiom. Thus ¢ is independent of T if both T+¢p and T+w are consistent.
A model of a theory T is an interpretation of the individuals, functions and
relations of the underlying language such that each ¢ ¢ T is true. A set
of formulas has a model if and only if it is consistent. In addition to this

basic fact, we will use the

Compactness Theorem [BS]: Let T be a set of formulas. T has a model iff

every finite subset of T has a model.

We will deal with a subtheory of (complete) arithmetic. Of course the
ing symbols interpreted in the obvious way. Any model *N (with + interpreted
as *+, etc.) which is not isomorphic to N is said to be nonstandard. Since
*N may be uncountable it is not surprising that nonstandard models of
arithmetic can exist. Skolem [SK], however, showed that countable non-
standard models are possible. We will discuss these more fully in Section IV.
For now it will be sufficient to note that if *N is a countable nonstandard
model of arithmetic *N-N consists of nonstandard objects which are infinite

relative to N; i.e., if a ¢ *N-N, a > n, for each M ¢ N. Henceforth




$od S em ow S8 =B =

Py ey

=

*N (or 'No.*N]) always denotes such a model.

We will nowdefine a particular theory PT. The language for PT includes
symbols for all the functions and predicates which are countable in poly-
nomial time. The axioms of PT are all true sentences of the form

(3x) (vy)A(x,y),

where A is quantifier-free (as usual x and y may denote several occurrences
of bound variables). A formula with such a quantifier is called an EA formula.
Similarly an AE formula contains the quantifier prefix V3 . The theory PT
is quite powerful. It includes the theory studied by Skolem [Sk1] -- which
he felt represented an important part of constructive number theory. Hilbert,
Herbrand, Kreisel and Scott [Sc] have also studied systems much weaker than
PT (Sh]. Perhaps more relevant to our discussion, the PV system of Cook [Ckl,
Ck2] is also weaker than PT. The axioms of PT include all the recursive
equations that define the functions and predicates included in PT. Moreover,
PT contains the induction axiom

AC0) A (Vx)[A(X) =+ A(x+1)] » (Vy)A(y). (*)
where A is a quantifier-free. To see this just note that (*) is equivalent
to

(3x) (wy ) [VA(0) v (A(x) A NA(x+1)) v A(y)].

For model-theoretic purposes the axioms PT can be replaced by their universal
members without changing the degree of the theory: both axiomatizations are
equivalent. The theory which Skolem studied can be formed by (*) and the
recursive definitions of the functions successor, addition, multiplication,
subtraction and integer division. Cook's PV theory is related to PT, but
notice that PT is not even recursively enumerable (inclusion of an axiom

depends upon its truth), so that PT is a vastly more powerful theory. Indeed
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it is not obvious how to deal with independence from PT using other than
model-theoretic techniques -- since PT is not recursively enumberable, it

is not clear how diagonalization can work at all!

III. Main Result

Our main result is that the intractability of any S ¢ NP n coNP is
equivalent to the existence of a nonstandard model for PT in which a certain
sentence AS. related to S, fails; i.e., PT + NAS is a consistent theory.

Let S be fixed and let A(x,y), B(x,y) be defined as follows:

(3y)A(x,y) iff x € S,
and

(Iy(B(x,y) iff x ¢ S.
Now form AS(A.B):

Ag(AB) = (Vx)[(Ay)A(x.y) v (32)B(x,2)]
Notice that, when interpreted in N, N |= AS(A.B) since in N
AgAm)«»Nmeﬁv x£S).

Theorem. Let S ¢ NP n coNP. Then the following statements are equivalent:

(1) SeP.
(2) PT | ag(A,B), for some A,B in the language of PT.

Proof of (1) = (2): If S ¢ P, there are polynomial time predicates A,B so

that x ¢ S iff A(x) and x ¢ S iff B(x).

Hence
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(vx)[@y)A(x} v 32)B(x}]

is an axiom of PT.

Proof of (2) = (1):

" Gaac . b ok RN

We will present three proofs of the converse. What is needed in all three

cases is to pass from PT | AS(A,B) to a true formula

m
(0§ A 00) y Y 8084 (x))

where the terms fi’gi are in the language of PT. Hence x € S is decided by

checking
n
y]A(x.fi(x)) (3)
i=
and
m
i\l_]B(x.gi(x)) (4)

If (3) is true x € S and if (4) is true x £ S, and since all terms and

predicates are polynomial time computable, S € P.

Proof A:
Let (¥x)(3y)r(x,y) denote AS(A,B), so that PT | (yx)(3y)r(x,y),

and suppose that

PT 1 (Vx)(?_]r(x.f,(x)). n1,2,...
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where f],fz.... are terms of PT. Define the theory T* by

T* = PT + mr‘(c,f](c)) %, ualh '\ar(c,fn(c)) +...

where c is a new constant, not appearing in PT. We first claim that T* is

consistent, for if not

PT + '»F(c,f1(c)) +...4 '\J‘(c,fm(c)) F o 0=1
by compactness and hence

PTE Y rleuf,(c)
i=]

which implies

T 0 Ut 0),
"=

establishing the claim. Choose any model M for T* and let Mc be the submodel
generated by c. Since PT is open, Mc E PT and thus Mc E @y)r(c,y). But

by our choice of c, M. F (Yy)vr(c,y). S e P now follows as described above.
0

Proof B:

We need to recall the following fact, often called the Kleene-Herbrand-

Gentzen Theorem [K1].

Lenma If T is a consistent collection of EA formulas and T |} (x)@y)e(x,y)
where ¢ is open, then for some terms over the terms of T, their compositions

and definition by cases, say f]....,f

m
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V 606, (x)
i=1

is true.

Roughly speaking, this allows us to make the existential quantifiers
explicit in a quite constructive fashion. Without the restriction on T the
lemma is easily seen to be false. Since PT satisfies the hypothesis for T

and AS(A,B) is AE, S € P follows by (3), (4) as described above.

Proof C:

The application of the Kleene-Herbrand-Gentzen Theorem can be replaced
by an application of the "pure" Herbrand Theorem [St1] as in Proof B to

conclude PT | "S g P".
o

Notice that Proof A is nonconstructive and involves compactness arguments.

The provability of AS(A,B) in this setting constitutes a "pure" existence proof
for polynomial time algorithms. The provability of AS(A,B) in the setting of

Proofs B and C constitutes a constructive existence proof for polynomial time
algorithms. (The apparent simplicity of Proof B compared to Proof A lies in
the great power of Herbrand's Theorem, which has played a basic role in
various consistency proofs in logic. The proof of Herbrand's Theorem is based
on a very careful analysis of how T can prove {yx)(@3y)¢(x,y)). However, the
running times of polynomial time algorithms produced in this way may be very

bad indeed. In fact, the best known bound i$ of order

' (5)




1

where the depth of nesting of the stack of 2's is bounded by the number of

inferences in the shortest proof of AS(A,B) in PT. These upper bounds are

the best known to logicians, although the lower bound literature is very

sparse (Statman has obtained this polynomial as a lower bound [St] although

for a theory much Tess relevant to complexity theorists). It has been often
noticed that, although there are problems with very large polynomial

running times, the only naturally occuring problems in P have "small" poly-
nomial complexity. This gap has helped to sustain a certain feeling that
membership in P is sufficient for computational tractability. If indeed the
polynomial bounds (5) cannot be locally reduced, this is compelling evidence

that P is much too extensive

This theorem above does not apply to arbitrary complexity classes. It
is apparently rather highly specialized for polynomial-like complexity classes.
At concrete levels, the theorem can be made to work for the following com-
plexity classes:

2poly—log

linear

+
n] €

En?og(k)n

How about those problems for which lower bound proofs have already been
supplied?Jr The theorem does not hold for any elementary lower bound

(functions which consist of bounded nestings of exponentials do not have the

+This issue was raised by R. E. Tarjan.
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closure properties required by Herbrand's Theorem). On the other hand, the

AS sentence for those sets which have provable nonelementary lower bounds

[MS] are false in the standard model of T, and so the issue of independence
does not even arise for those problems. 1a short, the theorem cannot apply
to a class of lower bounds F if the functions in F are not closed under
compositon and definition by cases, or if determinism and nondeterminism are

not distinquished at complexity F.

By identical arquments we can show that PT is also related to "P = NP."

Let us say that a theory T can verify that NP is closed under complements

if for S & NP
T I "S e coNP."
Corollary. PT can verify that NP is closed under complements iff p = NP,

By "checking" the theorem against the well-known problems which lie in
NP n coNP (e.q., Primes, Linear Programming, Breaking Public Key Crypto-
system [Ri]), a great deal of information can be obtained about the nonstandard
models whose existence is so intimately connected to lower bounds. We have

the corollaries:

Corallary. If Primes is not in P, then there is a nonstandard model of PT

in which primes need not have primitive roots [Pr].

Corollary. If Linear Programming is not in P, then there is a nonstandard
model of PT in which for some point y and some point-set X whose convex

hull does not contain y, there is no separating hyperplane through y [Do].

Since both of these corcllaries negate properties which hold in the

standard integers, it is difficult to imagine the models in which they fail.
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Moreover, the classical techniques for constructing nonstandard models do not

work at the simple level of AS(A.B). For example, forcing is a technique that

can be applied to formulas very high in the analytical hierarchy [Bu]. It is
generally acknowledged by logicians that there are few techniques for con-
structing such nonstandard models, yet the theorem cited above asserts that

a byproduct of any lower bound proof is an existence proof for such nonstandard

models.

Finally, we note that although we are unable to extend these results to
Peano Arithmetic, we can extend the theory PT slightly to include theories
with the property that all terms which grow slowly are easy to compute. Thus
we have corresponding independence results for theories of +, x and poly-

nomially honest functions. For instance, suitable theories are theories of

+,%X,x! and +.x‘.xyﬂ

IV. Nonstandard Models

In this section we will describe a result, due to R. Solovay, showing
that from the standpoint of constructing nonstandard models the theory PT is
almost as strong as Peano Arithmetic (PA, for short). We begin with a

digression on the nature of nonstandard models of PA and fragments of arithmetic.

The classical observation of Skolem was that a countable nonstandard
model of PA could be obtained simply by applying compactness to the set of

formulas
PA + (a>0) + (a>1) + (a>2) + ...
It is consistent to assume, then, that there exists a "nonstandard object" a

which is greater than all standard integers. Such a model *N contains N as

an initial segment and has an ordering *< extending < to *N-N. The global
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structure of *N is remarkable. Define for X,y € *N x=y to mean that x and

y differ by a standard integer, i.e., for some n e N:
Xx*-y = n or y*-x = n.

*N/= is a set of equivalence classes called blocks (each is order isomorphic
to N). N is a block. Also *< totally orders blocks like the rationals (i.e.,
blocks are densely ordered). Nonstandard integers cannot be described by
formulas of PA and any formula true of infinitely many integers must also hold

at some b € *N-N.

Nonstandard models for fragments of arithmetic also contain infinite,
nonstandard objects but may have vastly simpler structure. Consider the
(infinite) axiom system: for all n, m e N,
suc™(0)+Q = suc™(0),
sucm(0)+suc(sucm(0)) = suc(suCM+"(0)).
suc(0)x0 = 0,
suc"(o)xsuc(sucm(o)) = suc"(O)xsucm(0)+suc"(0).

suc™(0) # suc™0), for m # n,

(W) (x < suc™0) >V x = suci(O)),
0<i<m

(W) (x < suc™0) v suc™(0) < x).

A nonstandard model for this theory is
*N=Nu {w}), w#é N with *suc(w) = 0,

*suc(m) = suc(m) for all m € N and *+, *x defined by the following tables

S i e ——
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" X=w xeN *x XFw xeN
Y=w w w y=w 0 0
YeN w x+y yeN 0 Xxy

As another example, take the open theory of suc,pred,+,x and . together

with the induction axiom
A(0) A (Yx)[A(x) + A(suc(x)] ~ A(x), A open

A nonstandard *N consists of all nonnegative elements Q(t) of the ring of

polynomials

p-1

p-i/q
12;'0 °p-lt + b,

Where b,p,q € N, a; € R are algebraic and Q(t) *< Q'(t) is determined by

letting t +» ~,
This model is quite important since it contains a nonstandard element t3/?
such that
(t3/2)3 = 3 + 3,
so that Fermat's Last Theorem for m=3 fails in *N (see [Sh] for details).

An important aspect of these weak fragments of arithmetic is that they
can have “"effective" nonstandard models, such as the two models described
above. That is, there is a recursive definition of *+ and *x in terms of an

enumeration of the universe.

The possibility of independence from PT would be less intriguing if PT
turned out to be one of these weak fragments. That is, if a *N such that
*N [ NAS(A.B) could be found in which *+ and *x could be explicitly defined

by finite combinatorial means. In fact, PT has no effective nonstandard
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models, so that proofs of lower bounds are necessarily connected with the
existence of nonrecursive objects. We now sketch Solovay's proof of this

fact.

We first need the corresponding result for PA, known as Tannenbaum's
Theorem (cf. [Co] and [EK]): let *N be a nonstandard model of PA; then
at least one of *+ and *x must be nonrecursive. The key idea of the proof
is to find a nonstandard object y which effectively encodes the infinite
membership information regarding a nonrecursive set S. This can be done as
follows. It is possible in PA to define an RE nonrecursive set S. In *N,

S is *S. If p, is the jth

for the system

prime in *N, the Chinese Remainder Theorem holds

y = by mod p;, P, < ce*N (6)
Let ¢ € *N-N and define the b, in (o) by:
0, ifiesS

1, iIf1 ¢S

Information in y about *S is decoded as follows: search *N for a z such that

Ppz = ¥ (i.e., n € *S) or Ppz = ¥y-1 (i.e., n ¢ *S). If *N is effective, this

procedure is effective and so *S n N is a recursive set. It is not hard to
see that S ¢ *S n N; a contradiction is reached by constructing a specific S

which cannot be so extended.

Solovay's argument begins by noticing that although PT is weaker than
PA, the only thing that PT lacks is the ability to "talk about" growth
arguments. But, let *N be any nonstandard model of PT and let ¢ € *N-N be

a nonstandard integer. In the initial segment beneath c there is a submodel
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with enough “room" for the argument above to be carried out. To see how this

can happen let
"N = (xe*N|Toghc *> x for all keN},

'Nc is closed under polynomial time functions. For example suppose x ¢ 'Nc.
Then

k+1

log0 ‘¢ * x, for all k ¢ N

and so
logkc o 2% w x2.

Surprisingly, 'Nc is also a model of PT+ exponential. This follows as above:
if x ¢ 'Nc

k+2c * x, for all k ¢ N.

log

Thus
X

logkc *> 22 w 2X

implies 2% ¢ N,
Continuing in this manner, it is possible to build a model *M ¢ *N which

is closed under enough of the PA definable functions to let the proof of
Tannenbaum's Theorem be carried out. But then the recursiveness of *N contra-

dicts the nonrecursiveness of *M.

V. Further Discussion

The results presented above show that lower bound proofs are exactly as
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difficult as independence proofs. This in itself leads to interesting spec-
ulations, but we feel the real force of these results lies in the link they

create between the relatively new (and rather concrete) problems of computer

science and some classical questions at the foundations of mathematics. We
will mention just a few possibilities which ensue from such a link.
(1) It is possible that the methods of mathematical logic may help us

resolve such questions as whether or not P = NP,

(2) Since lower bound proofs are equivalent to independence proofs,
it is possible that the lower bound statements themselves are
independent from PA or similar theorems. We make the following

conjecture: "P = NP" is independent of PT.

(3) Following the measuring of (2), a viable approach to lower bounds

might be to look for consistency with theories such as PA and PT.

I (4) It is possible that a nontrivial lower bound will be proved, providing

an entirely new method of building nonstandard models for arithmetic.

- (5) It is possible that T } AS(A.B) implying the existence of a poly-

nomial but quite useless algorithm for S.

o

(6) The main result of Section III together with Solovay's result comes
very close to explaining tne difficulty in obtaining lower bounds:
any such proof must implicitly construct a noneffective system.

This makes it seem far less likely that the finite combinatorial
methods of the sort which have been applied in extant lower bound
proofs will be able to prove nontrivial lower bounds are NP-complete

problems.

|
|
l
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l
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